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In this paper, with a special model, we investigate the spatially periodic stochastic system with locally
coupled oscillators subject to a constant fofcé\ nonequilibrium second-order phase transition is found when
F=0. This phase transition is reentrant when the additive noise is weak. With varying the consta, farce
continuous or discontinuous transition between the states with positive and negative meagufre@sind
n<0) is observed, which is not a phase transition. The mean field or current sometimes exhibits hysteresis as
a function of F. With the variation of the forcd=, when hysteresis of the mean field or current verSus
appears, a nonzero probability current with definite direction will occur at the poitt. The correlation
between the additive and multiplicative noises has an effect on the transitions and the transport.
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I. INTRODUCTION Il. SPATIALLY PERIODIC STOCHASTIC SYSTEM WITH
LOCALLY COUPLED OSCILLATORS

Noise-induced nonequilibrium phenomena in nonlinear
sys.tems have recently attracted a great deal of atteption intf’1e system aréin dimensionless form and in the Stratonov-
variety of context41]. In general, these phenomena involve ich sensg
a response of the system that is not only produced or en-
hanced by the presence of the noise, but optimized for cer- _ D
tain values of the noise. One example is the phenomenon of X = f(x) +gO)&(®) - Z_dE (X =xj) + (1) + F,
stochastic resonan¢g], wherein the response of a nonlinear !
system to a signal is enhanced by the presence of noise, and
maximized for certain values of the noise parameters. An- f(x) = - dUs(x) (1)

The equations of the overdamped Brownian particles for

other is the “Brownian motor,” wherein for Brownian motion dx '
in stochastic spatial periodic potentials the spatial asymmetry

or noise asymmetry leads to a systematic transport whose dU,(x)
magnitude and even direction can be turned by the param- g(x) = - T

eters of the noisg3,4]. A third is the nonequilibrium transi-
tion for a system with finitely or infinitely coupled oscilla- in which the variables are defined on lattice points (i
tors, which is probably a phase transitigiirst or second =1,2,3,...19% of a cubic ind dimensions.U;(x) and
orden [5-10Q or is not[10,17. For these systems, the most U,(x)) are spatially periodic functions of with period b
exciting factor is that a reentrant second-order phase transi-a=L. £(t) and #(t) are Gaussian white noises witt(t))
tion was found for a general spatially extended model by Van: (4, (t))=0, (&MDE())=2D,5;8(t-t), () m(t"))
den Broeclet al. [6]. Afterward, this phenomenon was found =2D,8 8(t-t'), and (&(t) n-(t’)>=2>\\s’—D D,5 S(t-t') with
. . . i ' i j 1~20

in many systems with coupled oscillators. A fourth such phe-_1$ N

homenon is resonant activifl2]. Here the mean first pas- The oscillators we are considering are infinite, and we have

sage time(MFPT) of a particle driven by(usually whitd i qyced the Weiss mean-field approximatine= (x)
noise over a fluctuating potential barrier exhibits a minimum —

as a function of the parameter of the fluctuating potentiaFF(x), which has been extensively appligs6,9,13. In this

barrier (usually the flipping rate of the fluctuating potential @Pproximation, all the oscillators have an identical evolution

barriey. given by the nonlinear stochastic equation with the mean
In this paper, we will study the properties of the spatially field «, and the approximate equation of K@) is

periodic stochastic system with locally coupled oscillators .

subject to a constant force. Reentrant phase transition of the x=f(x) +g00&1 ~D(x = w) + 9 + F. (2)

system may occur. The transport driven by the constant forcg 4, ation(2) vields the Fokker-Planck equatiof@. 1
will be analyzed in detail. The problems will be set out as q @y q (14,

=<1. D is a coupling constant arfel a constant force.

follows. First, we consider a general model of locally FP(X, 1) = = A JI(X, 1), (3
coupled oscillators. Then using the formulas derived by us, a
special example will be investigated. with the probability currend(x, u,t) given by
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J(X, ,t) = A(X, ) P(X, 1, 1) = B(X)P(X, w, 1), (4)

where A(x, u) =f(x) = D(x— ) +D1g(X)g’ (x) + A\D1D,g’ (x)
+F and B(x)=D;g%(x) + D,+ 2\ VD;D,g(x). In the stationary
statet — o, the distributionP(x, u,t) — P(x, ), and the cur-
rentJ(x, u,t) —J=const. Then we have

J= A w)PX, 1) = ABX)P(X, ). ©)

The periodic boundary condition for the system is
P(a,u)=P(b,u). For convenience, we definab(x,u)
=[2A(X", 1)/ B(x")dX'. It is easy to obtain

J=N[1-eC], (6)

where N(w) =P(b, 1)B(b)/ [2e®*#dx’, which is the nor-
malized constant for the stationary probability distribution.
The stationary solution of Eq3) is

N(w)e®®m b , ,
PL(x, M):(*;)T J -0 00 gy (7)
a

where #(x—x’) is the Heaviside step functiofiFor a more
detailed derivation of formulag3)—(7), see Ref[4]]. Now
the Weiss mean-field approximation[i,6,9,13

o b
m=x)=F(u) = f XPgi(X, ) dX. (8)

Below we discuss the transition and transport of particles

for the system(i) If F=0, in the presence of spatial symme-
try, EqQ. (8) always has a trivial solutiom=0; with the ap-
pearance of multiple solutions, we can find: 0. If A #0, as
long asf(x) is odd andy(x) even, it follows from Eq(1) that
any realization{x;(t)} is equally probable a§-x(t)}, so the
symmetry-breaking phase transition exists;\if0, when
g(x) is odd or even and(x) odd, the symmetry-breaking
phase transition exists. With the zero mean figld0, the
system must have probability curredt0; with nonzero
mean fieldu # 0, J will not be equal to zerq(ii) If F+# 0, the
particles will move along the direction of the external con-
stant forceF. The system will only have the state# 0 with
asymmetry.

Ill. A SPECIAL MODEL

In this section, we study an example witf(x)=
—wg Sinx, and g(x;)=-sinx; (in dimensionless formwith
the periodL=27. In the stationary state— o0, from the cor-
responding formulas in Sec. I, we can obtain

A(X, i) = = wesin X — D(x = w) + D4Sin X cosx

- \VD;D,cosx+F,

9)

B(x) = D4sim’x + D, — 2\ VD4 D,sin . (10)

First, we study the case ¢t=0. We find thatf(x) and
g(x) are odd functions ok. When\ =0, this corresponds to
the condition in which the nonequilibium phase transition

happens. It can be easily verified that the functiefu)
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FIG. 1. (a) The functionF(u) vs the mean fielg for different
values ofD=-6, -4, -1, 0, and 1 witlF=0, A=0, wp=1, D;=1,
andD,=0.2.J, \, wq, D, D4, andD, are dimensionless. The func-
tion F(u)=u has one or three solutiong) Order parameten vs
couplingD of the oscillators folD;=D,=0.5,A=0, wy=0, accord-
ing to the mean-field theorgfull line), and 21 simulations for sys-
tem size 64 64. Notice that although the general features of mean-
field approximations agree with the simulation result, they tend to
overestimate the ordered region.

=fgxP(x,,u)dx is a smooth and odd function. Now we turn to

a more detailed analysis of the equatipreF(x). When
QHF(M)|#=0$ 1, the functionFiF(,u) crosses the function
F=u at u=0 (stablg; when d,F(u)|,=0>1, the functionF
=F(u) crosses the functiofr=x at 4=0 (unstablg and x
=+ u0 (stablg. We plot the functiorF=F(u) versusu with
D;=D,=1, wy=1,A=0, andD=-6, -4, -1, 0, 1 in Fig. (@).

It is clear that the stateu#0 is bistable withu=+u°

X (u%>0). For the trivial solutionu=0, the system is sym-
metrical. With the appearance of multiple solutions, we can
find an “ordered” phase with an order parameter(x) # 0.
Now the symmetry of the system will be broken. The condi-
tion under which the system transits from state0 to state

w#0 or vice versa is),F(u)| ,-0=1 with A=0.
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FIG. 3. The probability curreni vs the coupling constari® in
FIG. 2. The phase-transition lines in the casd-ef0 and\=0 the case off=0 with wy=1, D;=D,=1. (a) A=0. Two currents
for wp=1. (@) The coupling constard vs the multiplicative noise  occur with the same value and opposite directi@m.\ # 0. When
D, with D,=0.02 and 0.05. Now the reentrant phase transition oCthe value ofx is small(\=0.1), two asymmetrical stable probability

curs with weak additive noisgb) The coupling constard vs the  currents occur. Whem=0.5 or -0.5, only one stable probability
multiplicative noiseD, with D,=0.1, 0.2, and 1. No reentrant phase cyrrent is left with a definite value and direction.

transition occurs in this case.

nontrivial cooperative effect among the additive noise, the

We have performed numerical simulations of the modelmultiplicative noise, and the nonlinearity of the systésn
defined by Eq(1) on a square lattice. The simulation con- (iv) When the strength of the additive noise increases, such
firms qualitatively all the results of the mean-field ap-asD,=0.1, 0.2, and 1lsee Fig. )], the reentrant of the
proaches. In Fig. (b), we plot the order parameter as a  phase transition disappears. The noises and the coupling of
function of D for D;=D,=0.5 according to the mean-field the oscillators have different effects on the system. When the
theory developed together with the simulation result. Theadditive noise is weak, the nontrivial cooperation effect
simulation data indeed confirm the existence of transition. among the additive noise, the multiplicative noise, and the

The transition diagrams for coupling constdhtversus  nonlinearity of the system increases the asymmetry property
the multiplicative noisd, are plotted in Figs. @) and 2b). of the system with proper multiplicative noise. Now the “or-
The transition lines have the following characteristic fea-dered” state will be easy to see with weak coupling of the
tures. (i) The transition is a second-order phase transitionpscillators[see the peaks of Fig(@®]. With larger additive
since there is symmetry breaking and the order parameterwise, the multiplicative noise increases the freedom of the
change continuouslyii) The region above the curve corre- system and makes the system more “disordered.” The cou-
sponds to the state with zero mean field and that below thpling of the oscillators has a contrary effect. So with the
curve to the state with nonzero mean fielii.) When the intensity of the multiplicative noise increasing, the phase
intensity of the additive noisé, is lower, such asD, transition happens with large coupling of the oscillati@se
=0.02, 0.05 in Fig. &), the reentrant noise-induced nonequi- Fig. 2(b) and the right part of Fig. @)].
librium phase transition appears, in which the appearance of When A=0, accompanied with symmetry breaking, the
the reentrant of the disordered phase state results from raean field is nonzero, and a nonzero flux will appear. The
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FIG. 4. The probability currend vs the constant forcé with
weak couplingD=-1.7 of the oscillators, fowy=1, \=0, D;=D, o0k oo rEE et ]
=1. i
probability current] versus the coupling constabtis plot- 005 |-

ted in Fig. 3a) with D;=D,=1 and\=0. The figure shows
that there is a critical valuB,=-1.795 for the appearance of s
the nonzero probability current. Whén>D,, we can get a 0.00 [
zero probability curreng=0. Only on the other side of the
point Dy can we get two symmetrical nonzero probability
currents. These currents form a bistable structure, which cor s
responds td); andJ, (J;=-J,) in Fig. 3a). Only one stable

state can occur in the system. It is decided by the initial

- . . : : —— stable stat
condition and the evolution of the system which one will L  |..... znst:bles;te

occur(J or =J). An important property of this figure is that L L L

. -0.3 0.2 -0.1 0.0 01 0.2 0.3
the probability current becomes larger and larger when the

value ofD becomes smaller than a vallé’) (masked in the
figure). This accounts for the strong coupling of the oscilla-  FIG. 5. In the case of large couplifd=-5 of the oscillators,
tors. The freedom of the system will be decreased with inwith wy=1, A\=0, D;=D,=1. (a) The mean fieldu vs the constant
creasing intensity of the coupling among the oscillators. Nowr. Now there is a discontinuous transition line with hysterg®isA
the system will likely tend to an “ordered” state. Nf: 0, no  discontinuous transport line dfvs F with hysteresis.
nonequilibrium phase transition occurs; only the stable state
n+#0 appears. Due to correlation between the additive andnd so on, will be expected to appear because of the coupling
multiplicative noises, the symmetry property of the systemamong different oscillatorfl6]. First, we consider the case
and the coupling of the oscillators, the system will be in anof A\=0. We have studied the curredtas a function ofF
“ordered” state. A nonzero mean field and asymmetricalvhen the noise strength is definite but the coupling is varied.
probability current will appear. The probability currehter- ~ When the coupling is not large enough, the curréris a
sus the coupling constar? with different nonzeron (A continuous function of (see Fig. 4, which varies continu-
=0.1, 0.5, and -0)5s plotted in Fig. 8b). If A=0.1, there lie  ously from negative to positive or vice versa with the varia-
two stable probability currentghe upper and the lower ones tion of the external force. This current results from a con-
of the solid lineg in the regionD <DW=-3.85(the middle  tinuous transition of the mean field between the sjate0
line corresponds to the unstable state of the systethen  and the state. <0 as a function of. If the coupling is large
D>DW, only one stable probability current is left with a enough, the mean field becomes a discontinuous function of
definite value and direction. K=0.5(or —0.5), there isonly  F, such as the line in Fig.(8). Now there is a discontinuous
one stable nonzero curredt Now the correlation between transition between the statgs>0 andu <0, and a hyster-
the additive and the multiplicative noises is strong enough te@sis of the mean field appedts?]. As a result, the probabil-
destroy the bistable structure of the system. From the figurety currentJ is also a discontinuous function &f [see Fig.
we find that the correlation between the additive and thes(b)]. A hysteresis for the current versus the fofeappears
multiplicative noise is a factor that decreases the freedom dfut no negative mobility. Now with the variation of the ex-
the system. This effect decreases the symmetry property aérnal forceF, the probability current jumps from a definite
the system, and an “ordered” state occurs. direction to the opposite one. Though the appearance of the
If F+0, the particles will move along the direction of the hysteresis for the current versus the force in Fidp) Sesults
force. Such phenomena as hysteresis, negative mofiily ~ from the hysteresis for the mean field in Figap the direc-
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FIG. 6. The transition diagram of the constant fofeess the
coupling D of the oscillators for the transition between the state
©<0 and the statg.>0 with A=0, wg=1, andD,;=D,=1, where
the dashed line represents the continuous transition and the soli
line represents the discontinuous one. The shadowed region corre

sponds to the state composedwof-0 and . <O0. 008

tions of the hysteresis in these two figures are opposite. Ir,
the absence of the constant forEe the two stable mean
fields #u will induce two probability currents & In the
presence of the constant force, the nonzero current with ¢
definite direction will occufsee Fig. §)]. For the nonzero

-0.10

-0.16

current with definite direction wheR=0, there is a precon- >0

dition, namely that the constant force changes from nonzerc

to zero. But this transition is not a first-order phase transition 920 ¢ ” 3 ) r
because there is no symmetry breaking of the system. Thi D

order parameten does not change from zero to nonzero or
vice versa. In Ref][8], although the nonlinear system is
analogous to the one in this work, the order paraméter
changes between nonzero and a zero and a first-order pha:
transition occurs.

The transition line of the constant for€eversus the cou-
pling D of the oscillators is given in Fig. 6. The upper region
of the figure corresponds to the state< 0, the lower one to
the statew>0, and the shadowed one to the state composew
of u<0 andu >0, where hysteresis for the mean field or the
nonzero current appears. Some features of this transition ca ~ -10 |
be found from the figure(i) There is a critical valu®®? of
the couplingD. WhenD>D, a continuous transition for 15
the system to transit between the staies0 andu <0 oc-
curs with the variation of the forc&. WhenD<D®@, a [ :

. . - .. . - B4 B I
discontinuous transition occur6i) The discontinuous tran- 5 4 3 2 R
sition is doubly unidirectional, which can be observed from D
Fig. Xa). (iii) The transition between the two states is sym-
metric with respect té&=0. (iv) The transition is not a phase FIG. 7. Transition line of the constant foréevs the coupling
transition, since with the appearance of the transition there igonstantD with A=0.1, wo=1, D=-5, andD;=D,=1. (&) Over-
no symmetry breaking. view of the figure,(b) and(c) enlargements for the corresponding

Secondly, we consider the case of:0. If correlation  Parts(surrounded by dashed lineis (a).
between the additive and multiplicative noises is low, suchas
A=0.1, there are still two stable states with large coupling -\\VD;D,cosx in Eq. (9) will be similar to that of the con-
of the oscillators. Now the diagrams of the mean figldnd  stant forceF. The result is that the lines move to the left in
the current] versus the external forde are similar to Fig. the F axis. So the curves will move to the left wholly in
5(a) and Fig. %b). With nonzero\, the effect of the term comparison with those in Fig(& and Fig. b). In this case,

e S
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the transition line becomes more different from that in Fig. 6.teresis loop is found with large strength of the coupling
In Fig. 7, we plot the transition line for constant forée = among the oscillators. With a variation of the constant force
versus the coupling of the oscillators withh=0.1. Figure F, when F=0, the nonzero current with definite direction
7(a) is an overview of the transition. It is clear that the regionoccurs.(iv) If F#0 and\ #0, the correlation between the

in Fig. 7(a) is separated into several parts. In the left region,multiplicative and the additive noises cooperates with the
the intensity of the coupling among the oscillators is highconstant force~. This cooperation makes the system more
enough for the hysteresis to appear. Figur@s) &d {c) are  complex and increases the nonlinearity of the system. Now,
enlargements of the corresponding parts in F{@).7n Fig.  there is still hysteresis for the mean field or current versus
7(b), whenD<D®=-1.79, it is similar to the corresponding the constant forc& with the weak correlation between the
part in Fig. 6. WhenD®<D=-1, the curve increases multiplicative noise and additive noises.

abruptly with the increase dd. In Fig. 7(c), this curve in- The system with periodic potential is considered here, and
creases still, and tends to infinite whBr—-0.2. This is the  the additive noise and the multiplicative noise are correlated
upper line in Fig. 7c). The lower one has the same property, with the parametek, while in Ref.[18] the nonlinear force
but it tends to negative infinite with an increaselfiround  f(x) and the functiorg(x) are not periodic and the additive
the pointD=-0.2. Only the middle line varies slowly with noise and the multiplicative noise are correlated by a differ-
an increase of the coupling constdnt These lines separate ent form. These differences result in a different “effective”
the figure into several regions. In different regions, the meampotential. In both works, second-order reentrant phase tran-
field u has different values. This phenomenon results fromsitions that are introduced by the multiplicative noise have
the cooperation among the correlation between the additiveeen found. Though there is hysteresis in both works, in our
and multiplicative noises, the coupling of the oscillators, thework this phenomenon is caused by the external force that is
constant force, and the nonlinearity of the system\ lis  introduced by us. In the work of Ref18], for large enough
large, such aa=+0.5, only one stable state is left. Now the values of the coupling of oscillatoi3, a region of coexist-
hysteresis for the mean field and the current will not appearnce appears in the transition between order and disorder.
The additive noise is seen to induce a first-order phase tran-
sition in that system. When the first-order phase transition

) ) . appears, hysteresis can be expected to occur in the coexist-
In this paper, we have studied the transition and transponce region. The potential considered in our work is peri-
of the spatially periodic system with locally coupled oscilla- ogic. For the mean-field approximation, we consider only
tors subject to a constant foréeand driven by correlated fom - to . The system with the functiofi(x)=-sin(x)
multiplicative and additive noise§.) If F=0 and\ =0, there

IV. CONCLUSION AND DISCUSSION

; o has a more complex nonlinearity. This periodic potential will
is a phase transition between stages0 and x#0. The 5,0 the system to have a lower extent of symmetry, so it

transition is a second-order phase transition, since the symy; he more difficult to achieve symmetry breaking. A first-
metry of the system has been broken and the order parametgfyer hhase transition in the system will be difficult to get.

changes continuously. The reentrant phase transition appears\yhen there are finite arrays of oscillators, the features of
when the additive noise is weak, which results from the COthe system will change. For example, in Ri9], when the

operation among the additive noise, the multiplicative noisey a5 of oscillators are finite, the system has a transition
and the nonlinearity of the system. When the strength of th@oryeen the state with zero mean field and the state with
additive noise becomes large, the reentrant of the phase trafg ;610 mean field, while when the arrays of oscillators are
sition disappears. With the nonzero mean figlé 0, we can jyqnite no transition happens in the system. Thus in our

get th_e nonzero currentsil) If F=0 and)\sﬁo,_no phafse paper the case of finite arrays of oscillators remains to be
transition appears and the nonzero current with definite d"studied.

rection will be expected to occur due to the asymmetry pro-
duced by the correlation between the additive and multipli-
cative noises. With large values ®f the bistable structure of
the mean field for the system is destroyed, and there is only
one stable probability currentiii) If F#0 andA=0, the This work was supported by the National Natural Science
particles will move along the direction of the force. The hys-Foundation of China.
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