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In this paper, with a special model, we investigate the spatially periodic stochastic system with locally
coupled oscillators subject to a constant forceF. A nonequilibrium second-order phase transition is found when
F=0. This phase transition is reentrant when the additive noise is weak. With varying the constant forceF, a
continuous or discontinuous transition between the states with positive and negative mean fields(m.0 and
m,0) is observed, which is not a phase transition. The mean field or current sometimes exhibits hysteresis as
a function of F. With the variation of the forceF, when hysteresis of the mean field or current versusF
appears, a nonzero probability current with definite direction will occur at the pointF=0. The correlation
between the additive and multiplicative noises has an effect on the transitions and the transport.
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I. INTRODUCTION

Noise-induced nonequilibrium phenomena in nonlinear
systems have recently attracted a great deal of attention in a
variety of contexts[1]. In general, these phenomena involve
a response of the system that is not only produced or en-
hanced by the presence of the noise, but optimized for cer-
tain values of the noise. One example is the phenomenon of
stochastic resonance[2], wherein the response of a nonlinear
system to a signal is enhanced by the presence of noise, and
maximized for certain values of the noise parameters. An-
other is the “Brownian motor,” wherein for Brownian motion
in stochastic spatial periodic potentials the spatial asymmetry
or noise asymmetry leads to a systematic transport whose
magnitude and even direction can be turned by the param-
eters of the noise[3,4]. A third is the nonequilibrium transi-
tion for a system with finitely or infinitely coupled oscilla-
tors, which is probably a phase transition(first or second
order) [5–10] or is not [10,11]. For these systems, the most
exciting factor is that a reentrant second-order phase transi-
tion was found for a general spatially extended model by Van
den Broecket al. [6]. Afterward, this phenomenon was found
in many systems with coupled oscillators. A fourth such phe-
nomenon is resonant activity[12]. Here the mean first pas-
sage time(MFPT) of a particle driven by(usually white)
noise over a fluctuating potential barrier exhibits a minimum
as a function of the parameter of the fluctuating potential
barrier (usually the flipping rate of the fluctuating potential
barrier).

In this paper, we will study the properties of the spatially
periodic stochastic system with locally coupled oscillators
subject to a constant force. Reentrant phase transition of the
system may occur. The transport driven by the constant force
will be analyzed in detail. The problems will be set out as
follows. First, we consider a general model of locally
coupled oscillators. Then using the formulas derived by us, a
special example will be investigated.

II. SPATIALLY PERIODIC STOCHASTIC SYSTEM WITH
LOCALLY COUPLED OSCILLATORS

The equations of the overdamped Brownian particles for
the system are(in dimensionless form and in the Stratonov-
ich sense)

ẋi = fsxid + gsxidjistd −
D

2do
j

sxi − xjd + histd + F,

fsxid = −
dU1sxid

dxi
, s1d

gsxid = −
dU2sxid

dxi
,

in which the variablesxi are defined on lattice pointsi si
=1,2,3, . . . ,Ldd of a cubic in d dimensions.U1sxid and
U2sxid are spatially periodic functions ofxi with period b
−a=L. jistd andhistd are Gaussian white noises withkjistdl
=khistdl=0, kjistdj jst8dl=2D1di jdst− t8d, khistdh jst8dl
=2D2di jdst− t8d, and kjistdh jst8dl=2lÎD1D2di jdst− t8d with
−1ølø1. D is a coupling constant andF a constant force.
The oscillators we are considering are infinite, and we have
introduced the Weiss mean-field approximationm8 kxl
=F̄smd, which has been extensively applied[5,6,9,13]. In this
approximation, all the oscillators have an identical evolution
given by the nonlinear stochastic equation with the mean
field m, and the approximate equation of Eq.(1) is

ẋ = fsxd + gsxdjstd − Dsx − md + hstd + F. s2d

Equation(2) yields the Fokker-Planck equations[9,14],

]tPsx,m,td = − ]xJsx,m,td, s3d

with the probability currentJsx,m ,td given by
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Jsx,m,td = Asx,mdPsx,m,td − ]xBsxdPsx,m,td, s4d

where Asx,md= fsxd−Dsx−md+D1gsxdg8sxd+lÎD1D2g8sxd
+F andBsxd=D1g

2sxd+D2+2lÎD1D2gsxd. In the stationary
statet→`, the distributionPsx,m ,td→Psx,md, and the cur-
rent Jsx,m ,td→J=const. Then we have

J = Asx,mdPsx,md − ]xBsxdPsx,md. s5d

The periodic boundary condition for the system is
Psa,md=Psb,md. For convenience, we defineFsx,md
=ea

xAsx8 ,md /Bsx8ddx8. It is easy to obtain

J = Nf1 − eFsb,mdg, s6d

where Nsmd=Psb,mdBsbd /ea
be−Fsx8,mddx8, which is the nor-

malized constant for the stationary probability distribution.
The stationary solution of Eq.(3) is

Pstsx,md =
NsmdeFsx,md

Bsxd E
a

b

ef−Fsx8,md−Fsb,mdusx−x8dgdx8, s7d

where usx−x8d is the Heaviside step function[For a more
detailed derivation of formulas(3)–(7), see Ref.[4]]. Now
the Weiss mean-field approximation is[5,6,9,13]

m 8 kxl = F̄smd =E
a

b

xPstsx,mddx. s8d

Below we discuss the transition and transport of particles
for the system.(i) If F=0, in the presence of spatial symme-
try, Eq. (8) always has a trivial solutionm=0; with the ap-
pearance of multiple solutions, we can findmÞ0. If lÞ0, as
long asfsxd is odd andgsxd even, it follows from Eq.(1) that
any realizationhxistdj is equally probable ash−xistdj, so the
symmetry-breaking phase transition exists; ifl=0, when
gsxd is odd or even andfsxd odd, the symmetry-breaking
phase transition exists. With the zero mean fieldm=0, the
system must have probability currentJ=0; with nonzero
mean fieldmÞ0, J will not be equal to zero.(ii ) If FÞ0, the
particles will move along the direction of the external con-
stant forceF. The system will only have the statemÞ0 with
asymmetry.

III. A SPECIAL MODEL

In this section, we study an example withfsxid=
−v0 sin xi and gsxid=−sin xi (in dimensionless form) with
the periodL=2p. In the stationary statet→`, from the cor-
responding formulas in Sec. II, we can obtain

Asx,md = − v0sin x − Dsx − md + D1sin x cosx

− lÎD1D2cosx + F, s9d

Bsxd = D1sin2x + D2 − 2lÎD1D2sin x. s10d

First, we study the case ofF=0. We find thatfsxd and
gsxd are odd functions ofx. Whenl=0, this corresponds to
the condition in which the nonequilibium phase transition

happens. It can be easily verified that the functionF̄smd

=ea
bxPsx,mddx is a smooth and odd function. Now we turn to

a more detailed analysis of the equationm=F̄smd. When

]mF̄smdum=0ø1, the functionF̄=F̄smd crosses the function

F̄=m at m=0 (stable); when ]mF̄smdum=0.1, the functionF̄

=F̄smd crosses the functionF̄=m at m=0 (unstable) and m

= ±m0 (stable). We plot the functionF̄=F̄smd versusm with
D1=D2=1, v0=1, l=0, andD=−6, −4, −1, 0, 1 in Fig. 1(a).
It is clear that the statemÞ0 is bistable withm= ±m0

3sm0.0d. For the trivial solutionm=0, the system is sym-
metrical. With the appearance of multiple solutions, we can
find an “ordered” phase with an order parameterm=kxlÞ0.
Now the symmetry of the system will be broken. The condi-
tion under which the system transits from statem=0 to state

mÞ0 or vice versa is]mF̄smdum=0=1 with l=0.

FIG. 1. (a) The functionF̄smd vs the mean fieldm for different
values ofD=−6, −4, −1, 0, and 1 withF=0, l=0, v0=1, D1=1,
andD2=0.2. J, l, v0, D, D1, andD2 are dimensionless. The func-

tion F̄smd=m has one or three solutions.(b) Order parameterm vs
couplingD of the oscillators forD1=D2=0.5,l=0, v0=0, accord-
ing to the mean-field theory(full line), and 2d simulations for sys-
tem size 64364. Notice that although the general features of mean-
field approximations agree with the simulation result, they tend to
overestimate the ordered region.
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We have performed numerical simulations of the model
defined by Eq.(1) on a square lattice. The simulation con-
firms qualitatively all the results of the mean-field ap-
proaches. In Fig. 1(b), we plot the order parameterm as a
function of D for D1=D2=0.5 according to the mean-field
theory developed together with the simulation result. The
simulation data indeed confirm the existence of transition.

The transition diagrams for coupling constantD versus
the multiplicative noiseD1 are plotted in Figs. 2(a) and 2(b).
The transition lines have the following characteristic fea-
tures. (i) The transition is a second-order phase transition,
since there is symmetry breaking and the order parameters
change continuously.(ii ) The region above the curve corre-
sponds to the state with zero mean field and that below the
curve to the state with nonzero mean field.(iii ) When the
intensity of the additive noiseD2 is lower, such asD2
=0.02, 0.05 in Fig. 2(a), the reentrant noise-induced nonequi-
librium phase transition appears, in which the appearance of
the reentrant of the disordered phase state results from a

nontrivial cooperative effect among the additive noise, the
multiplicative noise, and the nonlinearity of the system[6].
(iv) When the strength of the additive noise increases, such
as D2=0.1, 0.2, and 1[see Fig. 2(b)], the reentrant of the
phase transition disappears. The noises and the coupling of
the oscillators have different effects on the system. When the
additive noise is weak, the nontrivial cooperation effect
among the additive noise, the multiplicative noise, and the
nonlinearity of the system increases the asymmetry property
of the system with proper multiplicative noise. Now the “or-
dered” state will be easy to see with weak coupling of the
oscillators[see the peaks of Fig. 2(a)]. With larger additive
noise, the multiplicative noise increases the freedom of the
system and makes the system more “disordered.” The cou-
pling of the oscillators has a contrary effect. So with the
intensity of the multiplicative noise increasing, the phase
transition happens with large coupling of the oscillators[see
Fig. 2(b) and the right part of Fig. 2(a)].

When l=0, accompanied with symmetry breaking, the
mean field is nonzero, and a nonzero flux will appear. The

FIG. 2. The phase-transition lines in the case ofF=0 andl=0
for v0=1. (a) The coupling constantD vs the multiplicative noise
D1 with D2=0.02 and 0.05. Now the reentrant phase transition oc-
curs with weak additive noise.(b) The coupling constantD vs the
multiplicative noiseD1 with D2=0.1, 0.2, and 1. No reentrant phase
transition occurs in this case.

FIG. 3. The probability currentJ vs the coupling constantD in
the case ofF=0 with v0=1, D1=D2=1. (a) l=0. Two currents
occur with the same value and opposite direction.(b) lÞ0. When
the value ofl is smallsl=0.1d, two asymmetrical stable probability
currents occur. Whenl=0.5 or −0.5, only one stable probability
current is left with a definite value and direction.
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probability currentJ versus the coupling constantD is plot-
ted in Fig. 3(a) with D1=D2=1 andl=0. The figure shows
that there is a critical valueD0=−1.795 for the appearance of
the nonzero probability current. WhenD.D0, we can get a
zero probability currentJ=0. Only on the other side of the
point D0 can we get two symmetrical nonzero probability
currents. These currents form a bistable structure, which cor-
responds toJ1 andJ2 sJ1=−J2d in Fig. 3(a). Only one stable
state can occur in the system. It is decided by the initial
condition and the evolution of the system which one will
occur (J or −J). An important property of this figure is that
the probability current becomes larger and larger when the
value ofD becomes smaller than a valueDs0d (masked in the
figure). This accounts for the strong coupling of the oscilla-
tors. The freedom of the system will be decreased with in-
creasing intensity of the coupling among the oscillators. Now
the system will likely tend to an “ordered” state. IflÞ0, no
nonequilibrium phase transition occurs; only the stable state
mÞ0 appears. Due to correlation between the additive and
multiplicative noises, the symmetry property of the system,
and the coupling of the oscillators, the system will be in an
“ordered” state. A nonzero mean field and asymmetrical
probability current will appear. The probability currentJ ver-
sus the coupling constantD with different nonzerol (l
=0.1, 0.5, and −0.5) is plotted in Fig. 3(b). If l=0.1, there lie
two stable probability currents(the upper and the lower ones
of the solid lines) in the regionD,Ds1d=−3.85(the middle
line corresponds to the unstable state of the system); when
D.Ds1d, only one stable probability current is left with a
definite value and direction. Ifl=0.5 (or −0.5), there is only
one stable nonzero currentJ. Now the correlation between
the additive and the multiplicative noises is strong enough to
destroy the bistable structure of the system. From the figure
we find that the correlation between the additive and the
multiplicative noise is a factor that decreases the freedom of
the system. This effect decreases the symmetry property of
the system, and an “ordered” state occurs.

If FÞ0, the particles will move along the direction of the
force. Such phenomena as hysteresis, negative mobility[15],

and so on, will be expected to appear because of the coupling
among different oscillators[16]. First, we consider the case
of l=0. We have studied the currentJ as a function ofF
when the noise strength is definite but the coupling is varied.
When the coupling is not large enough, the currentJ is a
continuous function ofF (see Fig. 4), which varies continu-
ously from negative to positive or vice versa with the varia-
tion of the external force. This current results from a con-
tinuous transition of the mean field between the statem.0
and the statem,0 as a function ofF. If the coupling is large
enough, the mean field becomes a discontinuous function of
F, such as the line in Fig. 5(a). Now there is a discontinuous
transition between the statesm.0 andm,0, and a hyster-
esis of the mean field appears[17]. As a result, the probabil-
ity currentJ is also a discontinuous function ofF [see Fig.
5(b)]. A hysteresis for the current versus the forceF appears
but no negative mobility. Now with the variation of the ex-
ternal forceF, the probability current jumps from a definite
direction to the opposite one. Though the appearance of the
hysteresis for the current versus the force in Fig. 5(b) results
from the hysteresis for the mean field in Fig. 5(a), the direc-

FIG. 4. The probability currentJ vs the constant forceF with
weak couplingD=−1.7 of the oscillators, forv0=1, l=0, D1=D2

=1.

FIG. 5. In the case of large couplingD=−5 of the oscillators,
with v0=1, l=0, D1=D2=1. (a) The mean fieldm vs the constant
F. Now there is a discontinuous transition line with hysteresis.(b) A
discontinuous transport line ofJ vs F with hysteresis.
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tions of the hysteresis in these two figures are opposite. In
the absence of the constant forceF, the two stable mean
fields ±m will induce two probability currents ±J. In the
presence of the constant force, the nonzero current with a
definite direction will occur[see Fig. 5(b)]. For the nonzero
current with definite direction whenF=0, there is a precon-
dition, namely that the constant force changes from nonzero
to zero. But this transition is not a first-order phase transition
because there is no symmetry breaking of the system. The
order parameterm does not change from zero to nonzero or
vice versa. In Ref.[8], although the nonlinear system is
analogous to the one in this work, the order parameterkxl
changes between nonzero and a zero and a first-order phase
transition occurs.

The transition line of the constant forceF versus the cou-
pling D of the oscillators is given in Fig. 6. The upper region
of the figure corresponds to the statem,0, the lower one to
the statem.0, and the shadowed one to the state composed
of m,0 andm.0, where hysteresis for the mean field or the
nonzero current appears. Some features of this transition can
be found from the figure.(i) There is a critical valueDs2d of
the couplingD. WhenD.Ds2d, a continuous transition for
the system to transit between the statesm.0 andm,0 oc-
curs with the variation of the forceF. When D,Ds2d, a
discontinuous transition occurs.(ii ) The discontinuous tran-
sition is doubly unidirectional, which can be observed from
Fig. 5(a). (iii ) The transition between the two states is sym-
metric with respect toF=0. (iv) The transition is not a phase
transition, since with the appearance of the transition there is
no symmetry breaking.

Secondly, we consider the case oflÞ0. If correlation
between the additive and multiplicative noises is low, such as
l=0.1, there are still two stable states with large couplingD
of the oscillators. Now the diagrams of the mean fieldm and
the currentJ versus the external forceF are similar to Fig.
5(a) and Fig. 5(b). With nonzerol, the effect of the term

−lÎD1D2cosx in Eq. (9) will be similar to that of the con-
stant forceF. The result is that the lines move to the left in
the F axis. So the curves will move to the left wholly in
comparison with those in Fig. 5(a) and Fig. 5(b). In this case,

FIG. 6. The transition diagram of the constant forceF vs the
coupling D of the oscillators for the transition between the state
m,0 and the statem.0 with l=0, v0=1, andD1=D2=1, where
the dashed line represents the continuous transition and the solid
line represents the discontinuous one. The shadowed region corre-
sponds to the state composed ofm.0 andm,0.

FIG. 7. Transition line of the constant forceF vs the coupling
constantD with l=0.1, v0=1, D=−5, andD1=D2=1. (a) Over-
view of the figure,(b) and (c) enlargements for the corresponding
parts(surrounded by dashed lines) in (a).
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the transition line becomes more different from that in Fig. 6.
In Fig. 7, we plot the transition line for constant forceF
versus the couplingD of the oscillators withl=0.1. Figure
7(a) is an overview of the transition. It is clear that the region
in Fig. 7(a) is separated into several parts. In the left region,
the intensity of the coupling among the oscillators is high
enough for the hysteresis to appear. Figures. 7(b) and 7(c) are
enlargements of the corresponding parts in Fig. 7(a). In Fig.
7(b), whenDøDs3d=−1.79, it is similar to the corresponding
part in Fig. 6. WhenDs3døDø−1, the curve increases
abruptly with the increase ofD. In Fig. 7(c), this curve in-
creases still, and tends to infinite whenD→−0.2. This is the
upper line in Fig. 7(c). The lower one has the same property,
but it tends to negative infinite with an increase ofD around
the pointD=−0.2. Only the middle line varies slowly with
an increase of the coupling constantD. These lines separate
the figure into several regions. In different regions, the mean
field m has different values. This phenomenon results from
the cooperation among the correlation between the additive
and multiplicative noises, the coupling of the oscillators, the
constant force, and the nonlinearity of the system. Ifl is
large, such asl= ±0.5, only one stable state is left. Now the
hysteresis for the mean field and the current will not appear.

IV. CONCLUSION AND DISCUSSION

In this paper, we have studied the transition and transport
of the spatially periodic system with locally coupled oscilla-
tors subject to a constant forceF and driven by correlated
multiplicative and additive noises.(i) If F=0 andl=0, there
is a phase transition between statesm=0 and mÞ0. The
transition is a second-order phase transition, since the sym-
metry of the system has been broken and the order parameter
changes continuously. The reentrant phase transition appears
when the additive noise is weak, which results from the co-
operation among the additive noise, the multiplicative noise,
and the nonlinearity of the system. When the strength of the
additive noise becomes large, the reentrant of the phase tran-
sition disappears. With the nonzero mean fieldmÞ0, we can
get the nonzero currents.(ii ) If F=0 and lÞ0, no phase
transition appears and the nonzero current with definite di-
rection will be expected to occur due to the asymmetry pro-
duced by the correlation between the additive and multipli-
cative noises. With large values ofl, the bistable structure of
the mean field for the system is destroyed, and there is only
one stable probability current.(iii ) If FÞ0 and l=0, the
particles will move along the direction of the force. The hys-

teresis loop is found with large strength of the coupling
among the oscillators. With a variation of the constant force
F, when F=0, the nonzero current with definite direction
occurs.(iv) If FÞ0 andlÞ0, the correlation between the
multiplicative and the additive noises cooperates with the
constant forceF. This cooperation makes the system more
complex and increases the nonlinearity of the system. Now,
there is still hysteresis for the mean field or current versus
the constant forceF with the weak correlation between the
multiplicative noise and additive noises.

The system with periodic potential is considered here, and
the additive noise and the multiplicative noise are correlated
with the parameterl, while in Ref. [18] the nonlinear force
fsxd and the functiongsxd are not periodic and the additive
noise and the multiplicative noise are correlated by a differ-
ent form. These differences result in a different “effective”
potential. In both works, second-order reentrant phase tran-
sitions that are introduced by the multiplicative noise have
been found. Though there is hysteresis in both works, in our
work this phenomenon is caused by the external force that is
introduced by us. In the work of Ref.[18], for large enough
values of the coupling of oscillatorsD, a region of coexist-
ence appears in the transition between order and disorder.
The additive noise is seen to induce a first-order phase tran-
sition in that system. When the first-order phase transition
appears, hysteresis can be expected to occur in the coexist-
ence region. The potential considered in our work is peri-
odic. For the mean-field approximation, we consider only
from −p to p. The system with the functionfsxd=−sinsxd
has a more complex nonlinearity. This periodic potential will
cause the system to have a lower extent of symmetry, so it
will be more difficult to achieve symmetry breaking. A first-
order phase transition in the system will be difficult to get.

When there are finite arrays of oscillators, the features of
the system will change. For example, in Ref.[19], when the
arrays of oscillators are finite, the system has a transition
between the state with zero mean field and the state with
nonzero mean field, while when the arrays of oscillators are
infinite no transition happens in the system. Thus in our
paper the case of finite arrays of oscillators remains to be
studied.
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